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Abstract—A generalized Stefan’s problem for the coupled heat and mass transfer in a porous medium
has been formulated, the solution of which provides the position of the variable evaporation front as well
as the distribution of temperature and moisture in the porous body. It is shown that the effect of the deepen-
ing of the evaporation front on unsteady heat and mass transfer in a porous medium is characterized by v,
the nondimensional heat of vaporization. To bring out the effect of mass transfer on heat transfer with
evaporation of liquid from porous system, results are compared with pure heat conduction in a half space.
In two limiting cases above problem reduces to simple linear problems. It has been shown that in these cases
the solutions obtained above lead to the corresponding solutions known earlier. The solution of this
problem has also been obtained by an integral technique for comparison of the results obtained through
the extended variational method based on local potential.

NOMENCLATURE

thermal diffusivity ;
moisture diffusivity.;
specific mass capacity;
specific heat capcity;

. az
Fourier number, —lz—;
thermal conductivity;

. Lc,AO
Kossovitch number, ———;
¢ At
the characteristic length;

latent heat of vaporization of liquid per unit
mass;

. a
Luikov number, —:
aq
kay(t, — to).
(t,—t)

nondimensional thermal penetration depth;
nondimensional moisture  penetration
depth;

position of evaporation front;
nondimensional position of evaporation

front, s/i;
temperature;
temperature at surface x = 0;
. . t—1tp
nondimensional temperature,t : ;
s — to

length coordinate;
nondimensional length, x/I.

Greek symbols

a,

B,

nondimensional constant defined by (3.24);
nondimensional constant defined by (3.23);

d, Soret coefficient ;

A0, 6,-0,;

At,, ty—t,;

At,  ty— to;

€, coefficient of internal evaporation;

0, mass transfer potential;

6, nondimensional mass transfer potential,
6o — 8
0 — 96,

A, nondimensional constant defined by (3.1);
cko

t =

v, nondimensional latent heat of vaporization
of liquid, (1 — §pmL

c A, ’
v (1 - E)meaq )
i ky(ty —tg)

Do density of moisture per unit volume;

Py density of porous medium per unit volume;

Pme  nondimensional density of liquid, p,./0,;

T, time.

Subscripts

v, vaporizing state;

1, first region, 0 < x < s;

2, second region, s < X < o0 ;

21, ratio of properties of region 2 to 1;

0, initial state;

Superscript
0, macroscopic state.

1. INTRODUCTION

AN IMPORTANT group of problems is that in which a

313



314 L. N. GurTa

substance has a transformation point at which it
changes from one phase to another with emission or
absorption of heat. Such cases arise in many contexts
and may involve melting, solidification or evapora-
tion. First of all, the problem of thickness of polar ice
was studied by Stefan and for this reason the problem
of freezing is referred to as the problem of Stefan [1].
The essential new feature of such problems is the
existence of a moving surface of separation between
the two phases.

Luikov [2] has studied steady state heat and mass
transfer between a capillary porous medium and an
external gas stream during drying. It has been con-
cluded by him that even with constant evaporation
rate, evaporation takes place inside the body at a
certain depth and that the deepening of the evapora-
tion front has a very appreciable effect on the heat
transfer rate. The above investigation was carried out
with the assumption that depth of the evaporation
front is fixed. It has been pointed out by Luikov [2]
that in the case of intense drying and evaporation
cooling of a porous body the evaporation front
deepens into the body and thus the evaporation front
is at a certain variable depth. The same problem was
studied by Morgan and Yerazunis [3] for the laminar
and turbulent gas streams with variable porous
surface temperature. However, it may be appreciated
that for the study of the initial stages of the drying
process, a correct formulation should involve the
solution of the transient problem of heat and mass
transfer in a porous medium with variable front of
evaporation and the position of the evaporation front
should come out from the solution of the problem.
To the best of our knowledge, no earlier attempt
has been made to solve unsteady heat and mass
transfer in a porous medium with moving evapora-
tion front.

The moving evaporation front divides the system
into two regions. While the moisture in one region is in
vapour form only, in the other region it is in mixed
(vapour and liquid) form. The moisture in vapour
form can be assumed to be going out from the surface
without taking any appreciable amount of heat from
the system. Thus the problem reduces to the simul-
taneous solution of pure heat conduction problem
in one region and solution of an unsteady coupled
problem of heat and mass transfer with moving
boundary in the other region. The essential new
feature of this problem is the existence of a moving
surface of separation between two regions where in
one of the regions simultaneous transfer of heat and
moisture takes place. This unsteady state problem
characterized by a moving evaporation front in a
porous medium and simultaneous transfer of heat

and moisture may be called a generalized Stefan’s
problem.

The purpose of this paper is to formulate the
generalized Stefan’s problem in a porous medium, to
obtain some approximate solutions of the same and
to study the effect of deepening of evaporation front
on temperature and moisture distributions. The
solution of the problem of heat and mass transfer in
a porous medium with moving evaporation front in
conjunction with the boundary layer of the drying
gas at the porous surface is still more formidable and
would form the subject matter of another paper.

It is well known, see for example [1] that the prob-
lem of freezing is nonlinear and do not admit super-
posed solutions. Not many exact solutions have been
obtained for such problems due to the inherent
nonlinearity present in the system of equations
describing the process. It is, therefore, usual to resort
to approximate methods for obtaining solutions to the
problem.

Kumar [4] has applied local potential method to
the solution of nonlinear problems in heat and mass
transfer in a porous medium. Rozenshtok [5] and
Kumar and Narang [6] have applied heat balance
integral techniques to obtain approximate solutions
to some linear and nonlinear problems in heat and
mass transfer in a porous medium. In this paper the
solution of the problem is obtained by a boundary
layer approach in local potential [7, 8]. Solution of
this problem is derived by the integral technique [6]
also, to make a comparison between the two results.

Numerical results for various values of nondimen-
sional heat of vaporization v have been depicted
graphically in Figs. 1-5. To bring out the effect of
mass transfer on heat transfer with evaporation of
liquid from porous system results are compared with
pure heat conduction through a half space. The non-
dimensional rate of motion of evaporation front has
been plotted against log, o(Fo) for various values of v.
Further the effect of deepening of evaporation front
on temperature and moisture distributions is shown
in Figs. 2-5. In section 4 of this paper solutions of
two limiting cases of the problem are derived from the
solution obtained here and it is noted that these
solutions are identical to the solutions of these prob-
lems known earlier. From numerical calculations it
has been verified that the difference in the results
obtained by heat balance integral technique [6] to
those obtained by local potential is less than 5 per
cent.

2. STATEMENT AND MATHEMATICAL FORMULATION
OF THE PROBLEM

Consider the flow of heat and moisture through a
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porous half space (x > 0) in which the surface x = 0
is at temperature t,, where ¢, is greater than the vapor-
izing temperature of the liquid. It is well known that
at a fixed pressure, there exists of every liquid a
temperature at which it vaporizes completely. Let us
assume that moisture vaporizes completely at tem-
perature ¢, The surface at which moisture vaporizes
completely is called the evaporation front. Initially,
whole body is at temperature ¢, and moisture 6,. Let
the position of the evaporation front at time t be
given by x = s(7). The evaporation front divides the
porous system into two regions, in theregion0 < x <s,
moisture is in vapour form only and there 1s no
moisture gradient, while in the region s < x < o
moisture is in mixed (vapour and liquid) form. Let us
further assume that moisture potential at the evapora-
tion front has a constant value 6,. Moisture in vapour
form can be assumed to be going out from the surface
x = 0 without taking any appreciable amount of heat
from the system.

Thus the problem reduces to the simultaneous
solution of pure heat conduction problem in one
region, and solution of a coupled problem of heat
and mass transfer with moving boundary in the other
region. The problem can be stated mathematically as
follows :

éty &,
P 0<x<s >0, (2.1
0, = 6, 22)

The coupled equations of heat and mass transfer in
the porous half space with constant properties can be
stated as [9]

ot, ot, N eLc,, ¢0, 23

2 _ a2 -2 )

ot ? ox? ¢, 0Ot )
s<x<o,t>0.

26, 020, é%, 24

&t @ ox? O ox? ’

As § is small quantity, for many practical problems
the second term in the R.H.S. of (2.4) may be neglected.
The initial and boundary conditions can be stated as

1,70=t, ©>0 (2.5)
t(x,0) =1t, x>0 (2.6)
0x.0) =0, x>0 @7
h=t,=1t, (2.8)
9, =0, =8, ] x=s 2.9)

An interface condition concerns the heat flux
required in vaporizing the moisture at this evapora-
tion front. As the evaporation front moves a distance
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ds, a quantity of heat per unit area is required for
vaporizing the moisture at this surface. This requires

o ot
R

x =S
0x cx

ds
—(1 —6&p,L— (2.10)
dt
The set of equations (2.1)+(2.10) can be represented

in the nondimensional form as

éT, T,
Fo  axt 0<X<S (2.11)
g, =0, (2.12)
eT, 0°T. e
2 _C2 .00 (2.13)
oFo 0X? d0Fo
S .
20, &0, < X<
T2 pu 2 (2.14)
¢Fo ). &
The interface conditions are
aT, oT, és (2.15)
v Koo = Vs
17,4 oX dFo X=5 (216
I1=T=T,
0,=6,=0,=1 (2.17)
The initial and boundary conditions are
TX,00=0 X>0 (2.18)
X0 =0 X>0 (2.19)
T(0,Fo) =1 Fo > 0. (2.20)

It is well known, see for example [1] that Stefan’s
problem is nonlinear because of the moving front.
Similarly, it can be seen that generalized Stefan’s
problem is nonlinear because of the boundary con-
dition (2.15) at X = S. Hence solution of the problem
in two regions are to be determined and cannot be
superposed.

3. SOLUTION OF THE PROBLEM
In this section an approximate solution of the
problem is obtained by local potential method
{4, 7, 10]. The solution of the problem is also obtained
by heat balance integral technique [ 6] for comparison
of the results obtained by these two approaches. As
explained in Section II of this paper the problem
reduces to the solution of a pure heat conduction
problem in one region, and a coupled problem of

heat and mass transfer in the other region.

(a) Solution for the region 0 < x < §
For the temperature distribution in the region
0 < X < § the exact solution for a semi-infinite body
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is used. This approximation has also been used by
Tien and Geiger [11] and Cho and Sunderland [12]
under the assumption that the law of motion of
surface of separation is given by

S(Fo) = 2A/Fo (3.1
where A is to be determined later.
Thus
(T, -1 X
T=———ef|l—|+1 0<X <SS (32
erf(4 2 /Fo

Since there is no moisture gradient in this region,
therefore, moisture is always ®, and in vapour form

0,=6, (3.3)

(b) Solution for the region S < X <

In the region S < X < o0, a coupled problem of
heat and mass transfer with first kind of boundary
conditions is to be solved. The solution of this prob-
lem is obtained by a boundary layer approach in
local potential [7, 8]. Schechter [8] and Kumar and
Gupta [7] have used idea of penetration depth in
local potential. Let us define a non-dimensional
thermal penetration distance g(Fo) beyond which it
is assumed that no heat flow takes place, and a non-
dimensional mass penetration distance Q(Fo) beyond
which no mass transfer takes place. These conditions
can be mathematically written as

T,=0 at X=S+¢ (3.4)
h 0 t X=S+ (3.5
= a = .
ix 4

and
©,=0 at X=S+0Q (3.6)
2 _y t X=S+0 (3.7
= a = 5 .
8x

Now with the help of conditions (2.16), (2.17) and
(3.4)-(3.7) we can assume parabolic profiles for the
temperature and moisture distributions as

X —S5\?
T,=T (1 - —"~
q
X — S\?
0,= [1-—2).
0

Kumar [4] has established the form of local potential
for coupled problem of heat and mass transfer in a

(3.8)

(3.9

porous medium. For one dimensional case it can be
written as

1 (2T)\? aT? 263
J = |==] + T, —=+ eKoT, —
2\ex oF, ¢Fo

Lu (80,\* 004
+ — + 0 — {dX. (3.10)

2 \eX 0Fo
Here, variation is to be taken independently and
exclusively over T and 6, where
T=T°+6T
()

(3.11)

0° + 0. (3.12)

1l

The unknown parameters ¢ and Q in the profiles (3.8)
and (3.9) are to be determined from

o 0 (3.13)
eq '
and
ol =0 (3.14)
oQ
with the self consistency conditions [10]
q4=q° (3.15)
and
0=0° (3.16)

Rozenshtok [5] and Kumar and Narang [6] have
used the idea of penetration depth for the solution of
coupled problems of heat and mass transfer. In the
case of coupled phenomena of heat and mass transfer,
it is essential to differentiate the cases where heat
transfer precedes mass transfer in the initial stage of
the process or vice versa. Therefore, two different
cases are to be considered, firstly when heat transfer
precedes mass transfer (g(Fo) > Q(Fo)) and secondly
when mass transfer precedes heat transfer (Q(Fo) >
q(Fo)).

Case 1. When g > Q (i.e. when heat transfer pre-
cedes mass transfer).

In this case S + ¢ > S + @, therefore, the limits of
integration in (3.10) will be from S to S + g. The
difference in solution in the two cases arise due to the
presence of the term

ées .
T, —=dX in (3.10). Here
cFo

S+q S+Q

209 009 809
T,—dX = T,—dX + T, —dX.
éFo dFo CFo

N s 5+Q

S+gq

(3.17)
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Since
209
—-OwhenS+Q<X<S+q (3.18)
Therefore, (3.17) takes the form
S+q $+Q o
0s 003
j Tz—dX 5 Tza——dX (3.19)

b

On simplification the set of equations (2.15), (3.13)
and (3.14) may be written as

200 + 58Q = 10Lu (3.20)
1
(2q4 + 58q — 10) + 154 [SQ <~ - g%)
2
+20 ( 0 - g)] =0 (321
e’ _ el — ) o399
\//(Fo) X \/(n) erf(j,) (ts - tv) q

Where dot () denotes differential w.r.t. Fo.

Now the problem reduces to obtaining S(Fo) and
parameters g and Q from the set of equations (3.20)-
(3.22). Goodman [13], Biot [14] and Kumar and
Narang [6] have shown that penetration distance
varies as A./Fo where A is some constant to be
determined from the equations. Therefore we assume

g =2B/Fo (3.23)

Q = 2u/Fo. (3.24)

Now the set of equations (3.20)(3.22) can be written
as

4% + 1004 = 10Lu (3259)

(4% + 1084 — 10) + 15u[22A(} — Lo/B)
+ 2o — Sa?B] =0 (3.26)
<’ LAy (327)

Jmerf(d)  p
The set of parameters o, 8, 1 can be obtained from

set of equations (3.25)(3.27). Further the rate of
motion of evaporation front is given by

A
h JFo
Rozenshtok [5] and Kumar and Narang [6] have
applied integral techniques to obtain approximate

solutions of coupled problem of heat and mass
transfer. Proceeding in the same way as Kumar and

(3.28)
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Narang [6] and assuming profiles for temperature
and moisture distributions as (3.8) and (3.9) the
corresponding set of equations for determination of
o, § and A come out as

2% + 60l = 6Lu (329)
(282 + 64 — 6)a = —6uf (3.30)
P (3.31)

Jmerf(h)

Therefore, the set of equations (3.2), (3.8) and (3.9)
give us the temperature and moisture distributions
in the two regions with these determined values of
o, f and A when g > Q.

Case 2. When g < Q (i.c. when mass transfer pre-
cedes heat transfer).

In this case § + g < S + Q, therefore, the limits of
integration in (3.10) will be from S to § + Q. Here

S+Q S+q S+Q
T, 003 2dx T. 6@ng + T, 6@ng
% ¢Fo % 8Fo 28F0
S 5 S+q (332)
Since T, =0whenS +g< X < S+ Q. (3.33)

Therefore, (3.32) takes the form

S+Q S+q

269
= T, —=dX. 3.34
j 2o (3.34)
s

The difference in relations (3.19) and (3.34) is in their
limits of integration.

Proceeding in the same way as in Case 1, equations
(3.25) and (3.27) remain same, only equation (3.26)
changes, the changed equation may be written as

(4% + 10BA — 100 + 15u[2822% — LB/%)

+ 28246 - $%/)] = 0.

Thus in this case the set of parameters a, § and 4 is

to be obtained from set of equations (3.25), (3.27) and
(3.39).

Further, proceeding by heat balance integral [6]

it is seen that the set of equations (3.29) and (3.31)

remain same as in Case 1 and only equation (3.30)
changes, the changed equation may be written as

Q2B* + 684 — 6)a® = —6uB%.  (3.36)

Now the set of parameters «, § and 4 is to be
obtained from set of equations (3.29), (3.31) and (3.36).

Therefore, the set of equations (3.2), (3.3), (3.8) and
(3.9) with these determined values of a, 8 and 1 give
us the temperature and moisture distributions in the
two regions when g < Q.

(3.35)
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4. SOME PARTICULAR CASES OF THE PROBLEM

In this section we discuss the two limiting cases of
the problem for 4 » 0 and 4 — cc.

Casel. 1 =0

When A = 0, equation (3.1) implies that S = 0 for
all values of Fo. It is possible only when the initial
and boundary conditions are such that the evapora-
tion front is fixed at the surface. From statement of
the problem in Section 2 it is obvious that 4 can be
zero, only when the temperature at the surface is less
than or equal to the vaporizing temperature of the
liquid, therefore, complete vaporization cannot take
place inside the porous system, consequently, the
problem reduces to coupled heat and mass transfer
problem in a porous half space with first kind of
boundary conditions.

Taking 4 = 0 in the set of equations (3.29) and
(3.30) we get

20° = 6Lu
(2> — 6)a = —6up.

Since this is a one phase problem, therefore, the
equation (3.31) is redundant in this case. From
equations (4.1) and (4.2) we obtain

Q = /(12LuFo) 4.3)
g =[—JO/Luyu+ J(12 + 3u*/Lu)] JFo. (4.4)

The solution of the problem given by equations (4.3),
(4.4), (3.8) and (3.9) is identical to the one obtained by
Kumar and Narang [6] for the case when heat
transfer precedes mass transfer.

Taking A = 0 in the set of equations (3.29) and
(3.36) we get

@.1)
(4.2)

202 = 6Lu (4.5)
(282 — ) u? = —6up> 4.6)
From equations (4.5) and (4.6) we obtain
Q = J/(12LuFo) 4.7
q = J(12Lu/(Lu + p)Fo (4.8)

Now set of equations (4.7), (4.8), (3.8) and (3.9) repre-
sent the solution of the problem for the case when
mass transfer precedes heat transfer (Q > ¢). This
solution is identical to the one obtained by Kumar
and Narang [6].

Case2. 1 = o0

When A — o0, equation (3.1) implies that § »
for all values of Fo. It is possible only when the initial
and boundary conditions are such that either no
moisture is present at all or the moisture is present in
vapour form only. From statement of the problem

L. N. Gurta

in Section II it is obvious that 4 can be infinity only
when the initial temperature of the body is T, or
greater than T, and the surface X = 0 is at a fixed
temperature greater than the initial temperature.
Thus the problem reduces to pure heat conduction
through a half space with first kind of boundary
conditions. The solution of this problem can be
obtained from equation (3.2) by taking 4 = cc, the
equation (3.2) reduces to

T i X
=erfc{ ——
2 /Fo

As quoted at Carslaw and Jaeger [1], (49) is the
exact analytical solution of the problem.

Thus it is seen that in the limiting cases 4 — 0 and
A — oo results obtained here are identical to the
corresponding results known earlier.

4.9

5. RESULTS AND DISCUSSION

The results of numerical calculations for various
values of v are depicted in Figs. 1-5. In Fig. 1 non-
dimensional rate of motion of evaporation front § is

qulo (£)

F1G. 1. Effect of variability of v on S(log,o(Fo)) for Lu = 0-5,
e=05Ko=12k,, = 10and p = 1.0.

plotted against log, o(Fo) for three different values of
nondimensional heat of vaporization v = 10, 15 and
100. It is seen that § >0 as v — cc and $ — o as
v — 0 for all values of Fo. Consequently the evapora-
tion front becomes fixed as v approaches infinity.
Hence when v is large evaporation front very close to
the surface.
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FiG. 2. Effect of variability of v on T(1, Fo) for Lu = 0-5,
e =05 Ko =12k, = 10and p = 1-0.

Since

_ 1= 9pml

5.1
cAt, 6.0

v
Therefore, for a given liquid v increases as At,
decreases. Thus v is large implies that the surface
temperature is very near to the vaporizing tempera-
ture of the liquid. Hence there is not intense drying at
the surface. In such cases Luikov [2] has reported
that evaporation front is very close to the surface.
In Figs. 2 and 3 nondimensional temperature
profile (Tvs Fo for X = 1.0) and (T vs X for Fo = 1-0)

[Re]

[oX:]

0-6

r— %
%

P -
s

04

o2

F1G. 3. Effect of variability of v on T(X,1) for Lu = 05,
£=05Ko=12k,, = 1.0and p = 1.0,

have been depicted for three different values  of
v = 0, 10 and 100. Here v = O represents the case of
pure heat conduction through a half space. Also from
numerical calculations it is seen that the figures for
v =100 and v = oo representing the temperature
distributions are almost identical. From Figs. 2 and
3 it is seen that the temperature at a fixed position
decreases as parameter v increases. Hence it can be
concluded that the effect of mass transfer (v > 0) on
heat transfer with evaporation of liquid from porous
system results in the decrease of temperature. Thus
for v = 100 the temperature at X = 1-0 and Fo = 1-0
is about 45 per cent lower than the case when no
moisture is present. Since some amount of heat flux
is consumed in evaporating the liquid, therefore, the
above stated result is in accordance with the physical
expectations.

From the observations in Figs. 1-3 it is noted that
when the evaporation front deepens (e.g. v = 10) the
temperature at a fixed position is higher than that
with evaporation on the surface (v = o0). This is an
extension of the result obtained by Luikov [2] for a
steady state problem.

In Figs. 4 and 5 nondimensional moisture potential
(® vs Fo for X = 1-0) and (@ vs X for Fo = 1-0) have
been depicted for three different values of v = 10, 100
and o0. Here v = o0 represents the case of heat and

-0

08

06

02

-
L

o} [ |
2 3 4 5 6 7
A
F1G. 4. Effect of variability of v on ©(1, Fo) for Lu = 0-5,
e=05 Ko =12k, =10and p = 1-0.

mass transfer through a porous half space when the
evaporation front is fixed at the surface. The non-
dimensional moisture potential decreases as the
moisture potential increases and vice versa. It is seen
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FiG. 5. Effect of variability of v on &(X,1) for Lu =05,
¢=05 Ko=12ky,; = 1-0and p = 1.0.

from Figs. 4 and 5 that moisture distribution for a
fixed position increases as parameter v increases.
Hence, it can be concluded that as rate of motion of
evaporation front increases, the moisture potential
decreases. Thus for v = oo the moisture potential at
X =10 and Fo = 1.0 is about 35 per cent higher
than the case when v = 10.

From the observations in Figs. 1, 4 and 5 it is
noted that as the evaporation front deepens (e.g.
v = 10) the moisture potential is lower than that with
evaporation on the surface (v = ).

The two limiting cases of the problem discussed in
section 4 of this paper can be easily seen from Figs.
2-5. From numerical calculations it is seen that as
v=o,A—->0andasv— 0, 4 - o0.

Thus the solutions of the limiting cases of the
problem are the solutions for the cases v = 0 and
v = 100 represented in Figs. 2 and 3 and v = w
represented in Figs. 4 and 5. Further from numerical
calculations it has been verified that the difference
between the results obtained by integral technique
[6] to those obtained by local potential method
[4. 7] is less than 5 per cent and hence is not shown
in figures.

In process of transpiration cooling, intense drying
of porous system and in many other practical
problems 0 < v < oc. From discussion in this section
it is obvious that the rate of motion of evaporation
front has a very appreciable effect on the temperature
and moisture distributions inside the porous system.
It may be concludedthat the nondimensional heat of
vaporization v characterizes the effect of the deepening
of the evaporation front on unsteady state heat and
mass transfer in a porous system.

L. N. Gurta

6. CONCLUSION

In this paper generalized Stefan’s problem with
moving evaporation front in a porous body has been
formulated and its approximate solution has been
obtained by local potential method. The solution of
the problem is also obtained by an integral technique
to make a comparison between the two results. It is
concluded in the study that the temperature at a fixed
position decreases and moisture at the fixed position
increases as nondimensional heat of vaporization v
increases.

Further, it is shown that the nondimensional heat
of vaporization v characterizes the effect of deepening
of the evaporation front on unsteady state heat and
mass transfer in a porous medium. Tt is noted that
the position and rate of motion of evaporation ront
are dependent on a parameter v. Solutions of limiting
cases of the problem discussed in section 4 of this
paper are obtained from the solution of the general-
ized Stefan's problem by taking 2 =0 and .
Solutions obtained in these particular cases are
identical to the solutions known earlier. Moreover,
it is seen that when v is large evaporation front is very
close to the surface.

The study of this problem wilt find direct applica-
tions in various fields like transpiration cooling of
Turbine blades, in chemical reactions when the
reaction front is moving and in the re-entry problems.
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UNE SOLUTION APPROCHEE DU PROBLEME GENERALISE DE STEFAN DANS UN
MILIEU POREUX

Résumé—On formule un probléme généralisé de Stefan pour le transfert couplé de masse et de chaleur. La
solution donne la position du front d’évaporation dans le corps poreux, aussi bien que la distribution de
température et d’humidité. On montre que I'effet de déplacement du front d’évaporation sur le transfert
transitoire de chaleur et de masse dans un milieu poreux est caractérisé par v, la chaleur de vaporisation
adimensionnelle. Pour dégager effet du transfert massique sur le transfert thermique avec évaporation de
liquide, les résultats sont comparés avec la conduction pure dans un demi-espace. Dans deux cas limites le
probléme se réduit & des problémes linéaires simples. On montre que dans ces cas les solutions obtenues
conduisent a des formes déja connues. La solution de ce probléme a aussi été trouvé par une technique inté-
grale, pour comparaison des résultats obtenus par une méthode variationnelle basée sur le potentiel local.

EINE NAHERUNGSLOSUNG DES ALLGEMEINEN STEFAN- PROBLEMS IN
EINEM POROSEN MEDIUM

Zusammenfassung—Es wurde ein verallgemeinertes Stefan-Problem fiir den gleichzeitigen Wirme- und
Stoffiibergang in einem Medium formuliert. Die Losung ergibt den Anteil der verdnderlichen Verdampf-
ungsfront und die Temperatur und Feuchteverteilung im pordsen K&rper. Es wird gezeigt, dass der Effekt
des Absinkens der Verdampfungsfront bei instationdrem Wirme- und Stoffaustausch in einem pordsen
Korper durch die dimensionsiose Verdampfungswirme charakicrisiert werden kann. Um die Aus-
wirkungen des Massentransports auf die Wirmeiibertragung bei Verdampfung von Fliissigkeit aus
porbsen Kdrpern zu zeigen, wurden die Ergebnisse mit denen der reinen Wirmeleitung im halbunend-
lichen K6rper verglichen. In zwei Grenzfillen \creinfacht sich das Problem in ein einfaches lineares. Es
wird gezeigt, dass die erhaltenen Losungen zu entsprechenden bereits bekannten Ergebnissen fithren. Die
Losung des Problems wurde auch nach einer Integral—Technik ermittelt im Vergleich vu Ergebnissen,
die nach der erweiterten Variationsmethode auf Grund des lokalen Potentials erhalten wurden.

IPUBIMKEHHOE PEIIEHUE OBOBIEHHOUW CTE@AHOBCHOU 3AJAYU
B MNOPUCTON CPEAL

Annoranma—CPHopMynuponana sagada A8 COBMECTHOTO TEILIO- ¥ MACco0OMeHa B MOPHCTOI
cpefie. liv pelleHHe MO3BNTAET ONMpPefeNUTE MOJNOKEHHe QPOHTA TEpCMEeHHOr0 UCHApeHusa, a
TAKHe paciperellenye TeMlepaTypsl ¥ BAAHKINCTH B TOpHCTOM Tesie, [lokasaHo, uTo BIusAHuUe
sarayGnenua QpoHTA uCHapeHUA HA HeCTAMOHADHBI Tenmo- 1 MaccoobMmed B HOPHUCTOH
cpefie XapawnTepmsyeTca 0e3pasMepHOR TennoToit ucmapeHus v. [{uA BHIACHEHUS BINAHUA
HepeHOca MACcCH Ha TErIo00MeH NPH HCHAPeHUN KIIKOCTH N3 NOPHCTON CHCTeMBI IPOBETEHO
CpaBHeHNE pe3yiabTATOB, IONYYeHHHX B CiyYae YUCTOH TerIONPOBOTHOCTH B NOJyHpPOCT-
pascrse. B nByX npegenbHBIX CIydaAX YKasaHHaA 3adaya CBOJUTCT K IIPOCTHIM JIMHENHBIM
cuydaam. IlokasaHo, YTo B 3THX CJHYYaAX pEUIEHHMH, IOJYYEHHLIE BBIIIC, HPUBOZAT K
COOTBeTCBYIOIMM DPelleHUAM, U3BECTHBIM paiee. Pemrerite paccmaTpuBaeMoil 3ajgadyu npoBe-
NeHO paKKe MHTETPAlbHBEIM METOIOM, YTO II03BOJAET ¢)ABHUTH PEBYILTATH C [AHHBIMH,
TOIYYeHHEIMY 0GOIIEHHLIM BAPHANMOHHEIM METOOM , OCHOBAHHBIM HA JIOKATBHOM NOTeHUAJE .
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