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Abstract--~A generalized Stefan‘s problem for the coupled heat and mass transfer in a porous medium 
has been formulated, the solution of which provides the position of the variable evaporation front as well 
as the distribution of temperature and moisture in the porous body. It is shown that the effect of the deepen- 
ing of the evaporation front on unsteady heat and mass transfer in a porous medium is characterized by v, 
the nondimensional heat of vaporization. To bring out the effect of mass transfer on heat transfer with 
evaporation of liquid from porous system, results are compared with pure heat conduction in a half space. 
In two limiting cases above problem reduces to simple linear problems. It has been shown that in these cases 
the solutions obtained above lead to the corresponding solutions known earlier. The solution of this 
problem has also been obtained by an integral technique for comparison of the results obtained through 

the extended variational method based on local potential. 
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NOMENCLATURE 

thermal diffusivity ; 
moisture diffusivity., 
specific mass capacity; 
specific heat capcity; 

Fourier number, F; 

thermal conductivity; 
Lc,,,AB 

Kossovitch number, ~. 
c,At, ’ 

the characteristic length ; 
latent heat of vaporization of liquid per unit 
mass ; 

Luikov number, 5; 
% 

k,,(& - to) 

(t, - t,.) ; 
nondimensional thermal penetration depth; 
nondimensional moisture penetration 
depth ; 
position of evaporation front; 
nondimensional position of evaporation 
front, sJ1; 
temperature ; 
temperature at surface x = 0; 

t - t, 
nondimensional temperature, P. 

t, - t; 
length coordinate; 

nondimensional length, x/l. 

Greek symbols 

@, nondimensional constant defined by (3.24) ; 
h nondimensional constant defined by (3.23) : 

Soret coefficient ; 
e. - 8,; 
4 - t,; 
4 - to; 
coefficient of internal evaporation ; 
mass transfer potential; 
nondimensional mass transfer potential, 
e. - e 

m- 
nondimensional constant defined by (3.1); 
cko 

r,; 
nondimensional latent heat of vaporization 
of liquid, (1 - c)pmqL 

c,& 
(1 - dPmL%; 

k,k - to) 
density of moisture per unit volume; 
density of porous medium per unit volume; 
nondimensional density of liquid, p Jpq; 
time. 

Subscripts 

0, vaporizing state; 

1, first region, 0 < x < s; 
2, second region, s < x < cc ; 
21, ratio of properties of region 2 to 1; 

0, initial state ; 

Superscript 
0, macroscopic state. 

1. INTRODUCTION 

AN IMPORTANT group of problems is that in which a 
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substance has a transformation point at which it 

changes from one phase to another with emission or 
absorption of heat. Such cases arise in many contexts 
and may involve melting, solidification or evapora- 

tion. First of all, the problem of thickness of polar ice 
was studied by Stefan and for this reason the problem 

of freezing is referred to as the problem of Stefan [l]. 
The essential new feature of such problems is the 

existence of a moving surface of separation between 
the two phases. 

Luikov [2] has studied steady state heat and mass 
transfer between a capillary porous medium and an 

external gas stream during drying. It has been con- 
cluded by him that even with constant evaporation 

rate, evaporation takes place inside the body at a 

certain depth and that the deepening of the evapora- 

tion front has a very appreciable effect on the heat 
transfer rate. The above investigation was carried out 

with the assumption that depth of the evaporation 
front is fixed. It has been pointed out by Luikov [2] 

that in the case of intense drying and evaporation 

cooling of a porous body the evaporation front 
deepens into the body and thus the evaporation front 

is at a certain variable depth. The same problem was 
studied by Morgan and Yerazunis [3] for the laminar 

and turbulent gas streams with variable porous 
surface temperature. However, it may be appreciated 
that for the study of the initial stages of the drying 
process, a correct formulation should involve the 

solution of the transient problem of heat and mass 

transfer in a porous medium with variable front of 
evaporation and the position of the evaporation front 
should come out from the solution of the prohlcm 

To the best of our knowledge, no earlier attempt 

has been made to solve unsteady heat and mass 
transfer in a porous medium with moving evapora- 

tion front. 
The moving evaporation front divides the system 

into two regions. While the moisture in one region is in 
vapour form only, in the other region it is in mixed 

(vapour and liquid) form. The moisture in vapour 

form can be assumed to be going out from the surface 
without taking any appreciable amount of heat from 
the system. Thus the problem reduces to the simul- 
taneous solution of pure heat conduction problem 
in one region and solution of an unsteady coupled 
problem of heat and mass transfer with moving 
boundary in the other region. The essential new 
feature of this problem is the existence of a moving 
surface of separation between two regions where in 
one of the regions simultaneous transfer of heat and 
moisture takes place. This unsteady state problem 
characterized by a moving evaporation front in a 
porous medium and simultaneous transfer of heat 

and moisture may be called a generalized Stefan’s 
problem. 

The purpose of this paper is to formulate the 

generalized Stefan’s problem in a porous medium, to 
obtain some approximate solutions of the same and 

to study the effect of deepening of evaporation front 
on temperature and moisture distributions. The 

solution of the problem of heat and mass transfer in 
a porous medium with moving evaporation front in 
conjunction with the boundary layer of the drying 

gas at the porous surface is still more formidable and 
would form the subject matter of another paper. 

It is well known, see for example [l] that the prob- 
lem of freezing is nonlinear and do not admit super- 

posed solutions. Not many exact solutions have been 
obtained for such problems due to the inherent 

nonlinearity present in the system of equations 

describing the process. It is, therefore. usual to resort 

to approximate methods for obtaining solutions to the 
problem. 

Kumar [4] has applied local potential method to 
the solution of nonlinear problems in heat and mass 

transfer in a porous medium. Rozenshtok [5] and 
Kumar and Narang [6] have applied heat balance 

integral techniques to obtain approximate solutions 
to some linear and nonlinear problems in heat and 

mass transfer in a porous medium. In this paper the 
solution of the problem is obtained by a boundary 

layer approach in local potential [7, 81. Solution of 
this problem is derived by the integral technique [6] 

also, to make a comparison between the two results. 
Numerical results for various values of nondimen- 

sional heat of vaporization v have been depicted 
graphically in Figs. l-5. To bring out the effect of 

mass transfer on heat transfer with evaporation of 
liquid from porous system results are compared with 
pure heat conduction through a half space. The non- 
dimensional rate of motion of evaporation front has 
been plotted against log,,(Fo) for various values of v. 
Further the effect of deepening of evaporation front 
on temperature and moisture distributions is shown 

in Figs. 2-5. In section 4 of this paper solutions of 
two limiting cases of the problem are derived from the 
solution obtained here and it is noted that these 
solutions are identical to the solutions of these prob- 
lems known earlier. From numerical calculations it 
has been verified that the difference in the results 
obtained by heat balance integral technique [6] to 
those obtained by local potential is less than 5 per 
cent. 

2. STATEMENT AND MATHEMATICAL FORMULATION 
OF THE PROBLEM 

Consider the flow of heat and moisture through a 
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ds, a quantity of heat per unit area is required for 
vaporizing the moisture at this surface. This requires 

porous half space (x > 0) in which the surface x = 0 
is at temperature t, where t, is greater than the vapor- 
izing temperature of the liquid. It is well known that 
at a fixed pressure, there exists of every liquid a 
temperature at which it vaporizes completely. Let us 
assume that moisture vaporizes completely at tem- 
perature t,. The surface at which moisture vaporizes 
completely is called the evaporation front. Initially, 
whole body is at temperature t, and moisture &,. Let 
the position of the evaporation front at time z be 
given by x = S(T). The evaporation front divides the 
porous system into two regions, in the region 0 < x < s, 
moisture is in vapour form only and there IS no 
moisture gradient, while in the region s < x < co 
moisture is in mixed (vapour and liquid) form. Let us 
further assume that moisture potential at the evapora- 
tion front has a constant value 8,. Moisture in vapour 
form can be assumed to be going out from the surface 
x = 0 without taking any appreciable amount of heat 
from the system. 

k, 8; - k2 2 = -(l - E)PmL$ x = s. (2.10) 

The set of equations (2.1)-(2.10) can be represented 
in the nondimensional form as 

C?T, a?, 
_=-- 
aFo ax2 OCXCS 1 

(2.11) 

@, = 8, 1 (2.12) 

i?T, a2T2 aB2 
-__--&_ 

aF0 ax2 aF0 
(2.13) 

ae2 220, 
s<x<oo. 

-=Lu-- 
aF0 ax2 

(2.14) 

The interface conditions are 
Thus the problem reduces to the simultaneous 

solution of pure heat conduction problem in one 
region, and solution of a coupled problem of heat 
and mass transfer with moving boundary in the other 
region. The problem can be stated mathematically as 
follows : 

aT1 _-k2,a~= (2.15) 

ax X = S. (2.16) 

Tl = T, = To 
I 

01 = 8, = 8” = 1 J (2.17) 

The initial and boundary conditions are 
at, a%, 
-=aq-Z a7 ax 1 O<x<s.r>O. (2.1) 

ei = 8” J (2.2) 

The coupled equations of heat and mass transfer in 
the porous half space with constant properties can be 
stated as [9] 

at, a2t2 EL c, ae2 
--aa,-+-- 
a7 ax2 cq az 

1 

(2.3) 

ae, a2e2 a, 
s<x< oo,z>o. 

-=amq+amss 
87 

(2.4) 

As 6 is small quantity, for many practical problems 
the second term in the R.H.S. of (2.4) may be neglected. 
The initial and boundary conditions can be stated as 

t(0, 7) = t, 7>0 (2.5) 

t(x, 0) = t, x>o (2.9 

0(x,0) = e. x>o (2.7) 

t, = t2 = t, 1 0.8) 

8, = e2 = 8” 1 x = s. 
(2.9) 

An interface condition concerns the heat flux 
required in vaporizing the moisture at this evapora- 
tion front As the evaooration front moves a distance 

3. SOLUTION OF THE PROBLEM 

In this section an approximate solution of the 
problem is obtained by local potential method 
[4,7, lo]. The solution of the problem is also obtained 
by heat balance integral technique [6] for comparison 
of the results obtained by these two approaches. As 
explained in Section II of this paper the problem 
reduces to the solution of a pure heat conduction 
problem in one region, and a coupled problem of 
heat and mass transfer in the other region. 

(a) Solutionfor the region 0 < x < S 

For the temperature distribution in the region 
1 0 < X < S the exact solution for a semi-infinite body 

TKO) = 0 x>o (2.18) 

0(X, 0) = 0 x>o (2.19) 

T(O,Fo) = 1 Fo > 0. (2.20) 

It is well known, see for example [l] that Stefan’s 
problem is nonlinear because of the moving front. 
Similarly, it can be seen that generalized Stefan’s 
problem is nonlinear because of the boundary con- 
dition (2.15) at X = S. Hence solution of the problem 
in two regions are to be determined and cannot be 
superposed. 
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is used. This approximation has also been used by 
Tien and Geiger [l l] and Cho and Sunderland [12] 
under the assumption that the law of motion of 
surface of separation is given by 

S(Fo) = 2/IV’F0 

where 1 is to be determined later. 
Thus 

(3.1) 

+ 1 0 < X < S. (3.2) 

Since there is no moisture gradient in this region, 
therefore, moisture is always 0, and in vapour form 

0, = o,.. (3.3) 

(b) Solutionfor the region S < X < CD 
In the region S < X < co, a coupled problem of 

heat and mass transfer with first kind of boundary 

conditions is to be solvel The solution of this prob- 
lem is obtained by a boundary layer approach in 

local potential [7, 81. Schechter [8] and Kumar and 
Gupta [7] have used idea of penetration depth in 
local potential. Let us define a non-dimensional 

thermal penetration distance q(Fo) beyond which it 

is assumed that no heat flow takes place, and a non- 
dimensional mass penetration distance Q(Fo) beyond 
which no mass transfer takes place. These conditions 
can be mathematically written as 

T, = 0 at X=S+q (3.4) 

and 

2T, 
-= 0 
l?X 

at X=S+q (3.5) 

02 = 0 at X=S+Q (3.6) 

co1 
-=O 
dX 

at X = S + Q. (3.7) 

Now with the help of conditions (2.16), (2.17) and 
(3.4)-(3.7) we can assume parabolic profiles for the 
temperature and moisture distributions as 

(3.8) 

x-s 2 
02 = ( 1 l-p-. 

Q 
(3.9) 

Kumar [4] has established the form of local potential 
for coupled problem of heat and mass transfer in a 

porous medium. For one dimensional case it can be 
written as 

Here, variation is to be taken independently and 
exclusively over T and 0, where 

T=T”+6T (3.11) 

0 = 00 f 60. (3.12) 

The unknown parameters q and Q in the profiles (3.8) 

and (3.9) are to be determined from 

and 

CJ 

z= 
0 (3.13) 

2J 
-= 0 
ZQ 

(3.14) 

with the self consistency conditions [lo] 

Y = 4O (3.15) 

and 

Q = Q" (3.16) 

Rozenshtok [5] and Kumar and Narang [6] have 
used the idea of penetration depth for the solution of 

coupled problems of heat and mass transfer. In the 

case of coupled phenomena of heat and mass transfer, 
it is essential to differentiate the cases where heat 
transfer precedes mass transfer in the initial stage of 
the process or vice versa. Therefore, two different 
cases are to be considered, firstly when heat transfer 
precedes mass transfer (q(Fo) > Q(Fo)) and secondly 
when mass transfer precedes heat transfer (Q(Fo) > 

q(Fo)). 
Case 1. When q > Q (i.e. when heat transfer pre- 

cedes mass transfer). 
In this case S + q > S + Q, therefore, the limits of 

integration in (3.10) will be from S to S + q. The 
difference in solution in the two cases arise due to the 
presence of the term 

a@ 
T, CFo dX m (3.10). Here 

s+q S+Q S+P 

s TzgdX = 
s 

T$dX + 
s 

TzgdX. 

s s S+Q 

(3.17) 
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Since 

a@(: 
Fo=OwhenS+Q<X<S+q. (3.18) 

Therefore, (3.17) takes the form 

s+q s S+Q 

T,ZdX = Tz 2 clX. (3.19) 

s s s 

On simplification the set of equations (2.15), (3.13) 

and (3.14) may be written as 

2QQ + 5sQ = 1OLu (3.20) 

~0 (3.21) 

e- i2 2k2,@” - to) 
J(F0) x J(x) erf (A) 

- -~ = vs. (3.22) 
(r, - r3 4 

Where dot (.) denotes differential w.r.t. Fo. 

Now the problem reduces to obtaining S(Fo) and 
parameters q and Q from the set of equations (3.2Ok 
(3.22). Goodman [13], Biot [14] and Kumar and 

Narang [6] have shown that penetration distance 
varies as A JFo where A is some constant to be 
determined from the equations. Therefore we assume 

q = 2/3 JFo (3.23) 

Q = 2u JFo. (3.24) 

Now the set of equations (3.2OH3.22) can be written 
as 

4uz + lo& = 1OLu (3.25) 

(4/? + lo/IA - 10) + 15/~[2al(f - +a/B> 

+ 21&a - fa”/fi)] = 0 (3.29 
e-i.z 

J(x) erf (A) i - ‘I’ 
(3.27) 

The set of parameters a, p, 1 can be obtained from 
set of equations (3.2w3.27). Further the rate of 
motion of evaporation front is given by 

S=&. (3.28) 

Rozenshtok [5] and Kumar and Narang [6] have 
applied integral techniques to obtain approximate 
solutions of coupled problem of heat and mass 
transfer. Proceeding in the same way as Kumar and 

Narang [6] and assuming profiles for temperature 

and moisture distributions as (3.8) and (3.9) the 

corresponding set of equations for determination of 

a, /I and L come out as 

2~’ + 6ul = 6Lu (3.29) 

(28’ + 6/U - 6)a = -6~8 (3.30) 

(3.31) 

Therefore, the set of equations (3.2) (3.8) and (3.9) 

give us the temperature and moisture distributions 
in the two regions with these determined values of 

a, p and 1 when q > Q. 
Cnse 2. When q < Q (i.e. when mass transfer pre- 

cedes heat transfer). 
In this case S + q < S + Q, therefore, the limits of 

integration in (3.10) will be from S to S + Q. Here 

S+Q s+q S+Q 

7,zdX = s ’ : 
T$&dX + 

s 
TzgdX. 

s s Sf¶ (3.32) 

Since T2 = 0 when S + q < X < S + Q. 

Therefore, (3.32) takes the form 

(3.33) 

S+Q s+q s T,$dX = T, 2 dX. (3.34) 

s s s 

The difference in relations (3.19) and (3.34) is in their 

limits of integration. 
Proceeding in the same way as in Case 1, equations 

(3.25) and (3.27) remain same, only equation (3.26) 
changes, the changed equation may be written as 

(4/12 + 10/U - 10)x + 15p[2f121(+ - +/I,%) 

+ 2fi2($B - fa’la)] = 0. (3.35) 

Thus in this case the set of parameters a, p and 1 is 
to be obtained from set of equations (3.25) (3.27) and 
(3.35). 

Further, proceeding by heat balance integral [6] 

it is seen that the set of equations (3.29) and (3.31) 
remain same as in Case 1 and only equation (3.30) 

changes, the changed equation may be written as 

(2fi2 + 6/U - 9 cx2 = -6pp2. (3.39 

Now the set of parameters a, p and 1 is to be 
obtained from set of equations (3.29) (3.31) and (3.39. 

Therefore, the set of equations (3.2) (3.3), (3.8) and 
(3.9) with these determined values of a, /I and 1 give 
us the temperature and moisture distributions in the 
two regions when (1 < Q. 
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4. SOME PARTICULAR CASES OF THE PROBLEM 

In this section we discuss the two limiting cases of 
the problem for I -+ 0 and 1 --t co. 

Cnsel. 1=0 

When I = 0, equation (3.1) implies that S = 0 for 
all values of Fo. It is possible only when the initial 

and boundary conditions are such that the evapora- 
tion front is fixed at the surface. From statement of 

the problem in Section 2 it is obvious that L can be 
zero, only when the temperature at the surface is less 

than or equal to the vaporizing temperature of the 
liquid therefore, complete vaporization cannot take 

place inside the porous system, consequently, the 

problem reduces to coupled heat and mass transfer 
problem in a porous half space with first kind of 
boundary conditions, 

Taking 1 = 0 in the set of equations (3.29) and 

(3.30) we get 

2a2 = 6Lu (4.1) 

(28’ - 9a = -6& (4.2) 

Since this is a one phase problem, therefore, the 
equation (3.31) is redundant in this case. From 

equations (4.1) and (4.2) we obtain 

Q = J(12LuFo) (4.3) 

q = [-d(3/Lu) p + ,/(12 + 3p2/Lu)] JFo. (4.4) 

The solution of the problem given by equations (4.3), 

(4.4) (3.8) and (3.9) is identical to the one obtained by 
Kumar and Narang [6] for the case when heat 

transfer precedes mass transfer. 
Taking 1 = 0 in the set of equations (3.29) and 

(3.39 we get 

2a2 = 6Lu (4.5) 

(2p2 - 9a2 = -6pj’. (4.9 

From equations (4.5) and (4.9 we obtain 

Q = d(12LuFo) (4.7) 

q = J(lZLu/(Lu + p))Fo (4.8) 

Now set of equations (4.7) (4.8) (3.8) and (3.9) repre- 
sent the solution of the problem for the case when 
mass transfer precedes heat transfer (Q > 4). This 
solution is identical to the one obtained by Kumar 

and Narang [6]. 

Case 2. 3, = co 
When 1 + co, equation (3.1) implies that S -+ co 

for all values of Fo. It is possible only when the initial 
and boundary conditions are such that either no 
moisture is present at all or the moisture is present in 
vapdur form only. From statement of the problem 

in Section II it is obvious that k can be infinity only 
when the initial temperature of the body is T, or 
greater than TV and the surface X = 0 is at a fixed 
temperature greater than the initial temperature. 
Thus the problem reduces to pure heat conduction 
through a half space with first kind of boundary 

conditions. The solution of this problem can be 

obtained from equation (3.2) by taking 1 = m. the 
equation (3.2) reduces to 

(4.9) 

As quoted at Carslaw and Jaeger [l], (4.9) is the 
exact analytical solution of the problem. 

Thus it is seen that in the limiting cases i -+ 0 and 
i -+ co results obtained here are identical to the 

corresponding results known earlier. 

5. RESULTS AND DISCUSSION 

The results of numerical calculations for various 
values of v are depicted in Figs. l-5. In Fig. 1 non- 
dimensional rate of motion of evaporation front 9 is 

-I6 

-2 -I 0 I 2 

lWIO($ ) 

FIG. 1. Effect of variability of v on $log,,(Fo)) for LU = 0.5. 
F = o-5, ho = I.?. /cZ, = 1.0 and p = 1.0. 

plotted against logi, for three different values of 
nondimensional heat of vaporization v = 10, 15 and 
100. It is seen that 3 + 0 as v -+ ok and s -+ n3 as 
v -+ 0 for all values of Fo. Consequently the evapora- 
tion front becomes fixed as v approaches infinity. 
Hence when v is large evaporation front very close to 
the surface. 



The generalized Stefan’s problem 319 

FIG. 2. Effect of variability of v on T(1, Fo) for Lu = 0.5, 
c = 0.5, Ka = 1.2. k,, = 1.0 and p = 1.0. 

Since 

(1 - 4 Pm& 
v=- --. 

c,Ar, 
(5.1) 

Therefore, for a given liquid v increases as At, 
decreases. Thus v is large implies that the surface 
temperature is very near to the vaporizing tempera- 
ture of the liquid. Hence there is not intense drying at 

the surface. In such cases Luikov [Z] has reported 
that evaporation front is very close to the surface. 

In Figs. 2 and 3 nondimensional temperature 
profile (TVS Fo for X = 1.0) and (T vs X for J?J = 1.0) 

0 I 2 3 4 

x 

FIG. 3. Effect of variability of Y on T(X, 1) for Lu = 0.5, __ __ _. _^ 
E = 05, Xo = 1.L k,, = 1.0 and p = 1.U. 

have been depicted for three different values of 

v = 0, 10 and 100. Here v = 0 represents the case of 

pure heat conduction through a half space. Also from 
numerical calculations it is seen that the figures for 
v = 100 and v = co representing the temperature 
distributions are almost identical. From Figs. 2 and 

3 it is seen that the temperature at a fixed position 
decreases as parameter v increases. Hence it can be 

concluded that the effect of mass transfer (v > 0) on 
heat transfer with evaporation of liquid from porous 
system results in the decrease of temperature. Thus 

for v = 100 the temperature at X = 1.0 and Fo = 1.0 
is about 45 per cent lower than the case when no 
moisture is present. Since some amount of heat flux 

is consumed in evaporating the liquid, therefore, the 
above stated result is in accordance with the physical 

expectations. 
From the observations in Figs. l-3 it is noted that 

when the evaporation front deepens (e.g. v = 10) the 

temperature at a fixed position is higher than that 
with evaporation on the surface (v = co). This is an 

extension of the result obtained by Luikov [Z] for a 
steady state problem. 

In Figs. 4 and 5 nondimensional moisture potential 

(0 vs Fo for X = 1.0) and (0 vs X for Fo = 1.0) have 

been depicted for three different values of v = 10, 100 
and co. Here v = rx~ represents the case of heat and 

I I I I I I 1 
0 I 2 3 4 5 6 7 

FIG. 4. Effect of variability of v on Q( 1, Fo) for Lu = 0.5, 
E = 05, Ko = 1.2, k,, = 1.0 and p = 1.0. 

mass transfer through a porous half space when the 
evaporation front is fixed at the surface. The non- 
dimensional moisture potential decreases as the 
moisture potential increases and vice versa. It is seen 
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FIG. 5. Effect of variability of 18 on 0(X, 1) for Lu = U.5. 
1: = 0.5, Kn = 1.2. k,, = I.0 and p = 1.0. 

from Figs. 4 and 5 that moisture distribution for a 

fixed position increases as parameter v increases. 
Hence, it can be concluded that as rate of motion of 
evaporation front increases, the moisture potential 

decreases. Thus for v = m the moisture potential at 

X = 1-O and Fo = 1.0 is about 35 per cent higher 
than the case when v = 10. 

From the observations in Figs. 1, 4 and 5 it is 

noted that as the evaporation front deepens (e.g. 
v = 10) the moisture potential is lower than that with 

evaporation on the surface (w = ~13). 
The two limiting cases of the problem discussed in 

section 4 of this paper can be easily seen from Figs. 
2-5. From numerical calculations it is seen that as 

I’= co,A+Oandas v+O,i+ x. 

Thus the solutions of the limiting cases of the 
problem are the solutions for the cases v = 0 and 
1’ = 100 represented in Figs. 2 and 3 and v = x 

represented in Figs. 4 and 5. Further from numerical 
calculations it has been verified that the difference 
between the results obtained by integral technique 

[6] to those obtained by local potential method 
[4, 71 is less than 5 per cent and hence is not shown 
in figures. 

In process of transpiration cooling, intense drying 
of porous system and in many other practical 
problems 0 < v < ,x. From discussion in this section 
it is obvious that the rate of motion of evaporation 
front has a very appreciable effect on the temperature 
and moisture distributions inside the porous system. 
It may be concludedThat the nondimensional heat of 
vaporization v characterizes the effect of the deepening 
of the evaporation front on unsteady state heat and 
mass transfer in a porous system. 
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6. CONCLUSION 

In this paper generalized Stefan’s problem with 

moving evaporation front in a porous body has been 
formulated and its approximate solution has been 
obtained by local potential method. The solution of 

the problem is also obtained by an integral technique 

to make a comparison between the two results. It is 
concluded in the study that the temperature at a fixed 
position decreases and moisture at the fixed position 
increases as nondimensional heat of vaporization v 
increases. 

Further, it is shown that the nondimensional heat 

of vaporization 11 characterizes the effect of deepening 

of the evaporation front on unsteady state heat and 
mass transfer in a porous medium. It is noted that 
the position and rate of motion of evaporation kront 
are dependent on a parameter V. Solutions of limiting 
cases nf the problem discussed in section 4 of this 
paper are obtained from the solution of the general- 
ized Stefan’s problem by taking R = 0 and CC. 

Solutions obtained in these particular cases are 
identical to the solutions known earlier. Moreover, 
it is seen that when v is large evaporation front is very 

close to the surface. 
The study of this problem will find direct applica- 

tions in various fields like transpiration cooling of 
Turbine blades, in chemical reactions when the 

reaction front is moving and in the re-entry problems. 
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UNE SOLUTION APPROCHEE DU PROBLEME GENERALISE DE STEFAN DANS UN 
MILIEU POREUX 

R&arm&-On formule un probleme generali& de Stefan pour le transfert couple de masse et de chaleur. La 
solution donne la position du front d’evaporation dans le corps poreux, aussi bien que la distribution de 
temperature et d’humidite. On montre que I’effet de d&placement du front d'tvaporation sur le transfert 
transitoire de chaleur et de masse dam un milieu poreux est caract&& par v, la chaleur de vaporisation 
adimensionnelle. Pour dtgager l’effet du transfert massique sur le transfert thermique avec evaporation de 
liquide,les rbultatssontcompar& nvecla conduction puredans un demi-espace. Dans deux caslimitesle 
probleme se reduit a des problbmea lineaircs simples. On montre que da& ces cas lcs solutions obtenues 
conduisent a des formes deja connues. La solution de ce probleme a aussi Ctt trouve par une technique int& 
grale, pour comparaison des r&&tats obtenus par une m&bode variationnelle basee sur le potentiel local. 

EINE NAHERUNGSLiSSUNG DES ALLGEMEINEN STEFAN- PROBLEMS IN 
EINEM POROSEN 11 EDIUM 

Z~am~enfass~g-Es wurde ein verallgemeinert~ Stefan-Problem fiir den gl~chzeitig~ W&me- und 
Stofftibergang in einem Medium formuliert. Die L&ung ergibt den Anteil der verlnderlichen Verdampf- 
ungsfront und die Temperatur und Feuchteverteilung im poriisen KGrper. Es wird gezeigt, dass der Effekt 
des Absinkens der Verdampfungsfront bei instationarem WLrme- und Stoffaustausch m einem poriisen 
Kiirper durch die dimensionslose Verdampfungswirme charaktcrisiert werden kann. Urn die Aus- 
wirkungen des Massentransports auf die WBrmefibertragung bei Verdampfung von Fltissigkeit aus 
porosen Karpem zu zeigen, wurden die Ergebnlsse mit denen der reinen Wiirmeleitung im halbunend- 
lichen K&per verghchen. In zwei Grenzl%len \ ~reinfacht sich das Problem in em einfaches lineares. Es 
wird gezeigt, dass die erhaltenen L&ungen zu entsprechenden bereits bekannten Ergebnisscn wren. Die 
Liisung des Problems wurde such nach einer Integral-Technik ermittelt im Vergleich zu Ergebnissen, 

die nach der erweiterten Variationsmethode auf Grund des lokalen Potentials erhalten wurden. 

AH~OTaI~Ma-C~OpMy~~p~~~~~3 33;[aWI AJlR COBMeCTHOI'O TeKIO- II MWCOOiiMeIIa B IIOpIICTOii 
cpene. L pemeuue no:3no;IneT onpe~encrrb nonoHEerrne @poura nepc~\iearroro rrcnaperruFi, a 
TaKHEe paCIIpeneJIeHIIe TeMllepaTypbI II BJIalhlloCTII B IIOpIICTOM Tene.llO~a:laHO,YTdBnllFIHMe 
3arJIy6JIeHIUI +pOHTa uClIapeHHJI Ha HeCTal~IlOHapHbIil TeIIJIO- A MaCCOO6MeH B IIOlmCTOi 
c.l)eze xapartTepa3yeTcn 6e3pa3MepHOir ~ennoToii ucnapenun v. J&III BbIncueIiurI BJIPRHHR 
nepe~OCaM3CCbI HaTen~oO6~e~ IIpII IICIIapeHIIH ~~~~OCT~I 513 ~Op~ICTO~ C~CT~MbI IIpOBeAeHO 
CpaBHeIIIIe pe3ynbTaTOB, ~O~y~eHHbIX B C3IyWe WICTOii Te~JIOnpOBO~HOCT~ B ~O~y~pOCT- 
paHCTBe. B nByX IIpeAeJIbHbIX CJIyWRX yHa3aHHaR 33Ra'i3 CI3OJuITCn K IIpOCTbIM JIIIHe#HbIM 

CnyYanM. IIoIiaaaHo, qT0 II 3TIIx cny<IafIx perueHun, IIonyYeuubre BbIum, II~MBOA~IT K 
cooTBeTcBylomuM pemesarrivr, u3necTubIM parree. Peruerrue paccaarpusacwoti :3anaqu npose- 
LteHo pHIWe IIHTeI'paJIbHbIM MBTOAOM, YTO II03BOJIHeT I'llanHMTb pe3yJIbTaTbI C HaHHbIMR, 
nOJyYeIIHbIMIIO60meHHb.IMBapIIaIIIIOHHbIM MeTO~OM,OCHOBaHHbIMHanOKaJIbHOMI?t~TeHLjIIaJIe. 


